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Abstract： High image quality is crucial for cell experiments in space， as it requires the ability of remotely moni⁃
toring to grasp the progress and direction of experiments.  However， due to space limitations and environmental 
factors， imaging equipment is strongly constrained in some performance， which directly affects the imaging quali⁃
ty and observation of cultivated targets.  Moreover， experimental analysis on the ground requires tasks such as fea⁃
ture extraction and cell counting， but uneven lighting can seriously affect computer processing.  Therefore， a 
method called STAR-ADF is proposed， and experimental results show that the proposed method can effectively re⁃
move noise， equalize illumination， and increase the enhancement evaluation index by 12. 5% in comparison with 
original figures， which has certain robustness.
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一种空间细胞实验显微图像增强方法
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摘要：高图像质量对于空间细胞实验至关重要，因为需要具备远程清晰监控的能力来把握实验进程和方向。
然而，在空间实验中，由于空间限制和环境因素的影响，成像设备在一些性能方面受到比较强的约束，这直接

影响了成像质量和对培养目标的观察。地面的分析需要对图像进行特征提取和计数等任务，但光照不均会

严重影响分割效果。为此，本文提出了一种名为STAR-ADF的方法，实验结果证明该方法能够有效去除噪声、
均衡光照，增强评价指标较原图提升了12.5%，并具有一定的鲁棒性。
关 键 词：微重力；细胞培养；光照不均；图像增强

中图分类号：TP31  文献标识码：A

Introduction
Numerous cell experiments conducted in space aim 

to study the rhythms of cell growth and differentiation， 
the biological effects of the space environment， and the 
impact of microgravity on cellular tissues［1］.  These exper⁃
iments contribute to a better understanding of the effects 
of the microgravity in space on living organisms.  During 
in situ cell culture， the assessment of experimental prog⁃
ress and subsequent strategic adjustments heavily relies 

upon cell morphology of a distinct period［2］.  Hence， it is imperative for the camera apparatus to possess attributes encompassing high resolution， high sensitivity， and low noise levels to ensure the clarity and accuracy of cap⁃tured images.In 2022， Shanshan He et al. ［3］ showcased the utili⁃zation of CosMx™ SMI for spatial molecular imaging， re⁃vealing its exceptional sensitivity and an impressively low rate of cell recognition errors.  The realm of space cell culture has been venturing into the realm of 3D organ cul⁃
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tivation， and the University of Zurich successfully trans⁃ported a dedicated space vehicle to the International Space Station （ISS） in March 2020.  However， achieving high-quality 3D imaging in the space environment contin⁃ues to pose challenges for current applications.Imaging devices and detectors are subject to the unique conditions of the space environment， including strong radiation， vacuum， and temperature fluctuations， which are quite different from the environment on Earth.  These conditions can introduce intricate noise patterns and uneven illumination issues which display on the Grayscale， thereby diminishing the quality and accuracy of the images.  Such degradation has far-reaching effects for scientific observations and analysis， so it is impera⁃tive to employ suitable techniques to enhance the quality of detector output data.For the two image tasks of highlight removing and denoising， state-of-the-art algorithms are mainly divided into traditional methods and machine learning-based methods.  Soleimani et al. ［4］ removed the effects of light with adaptive threshold techniques and denoised with BM3D filtering to achieve better cell segmentation.  How⁃ever， this method may lead to a loss of target details.  Park et al. ［5］ proposed a dual autoencoder network model based on the Retinex theory for enhancing and denoising low-light images.  Based on the U-net model， Ai et al. ［6］ employed a machine learning approach， utilizing short-exposure and long-exposure images as input and ground truth， respectively， for training.  The results demonstrate the network's ability to achieve balanced illumination while enhancing details in dark regions.  Recently， Gen⁃erative Adversarial Networks （GANs） have also been ex⁃plored as unsupervised image enhancement methods.  Ying et al. ［7］ proposed the LE-GAN method， which in⁃corporates an illumination-aware module into the GAN framework， effectively addressing noise and overexpo⁃sure issues in real-scene datasets.  Nonetheless， these network models still require standardized datasets， pos⁃ing a challenging problem in resource-limited space sci⁃ence experiments.Based on the Retinex theory， we present a method called STAR-ADF for enhancing microscopic images ob⁃tained from space life science experiments.  This method not only ensures preserving image details but also effec⁃tively addresses challenges associated with brightness and noise， which provides a valuable and practical tool for scientists to analyze the space experiment data.  Com⁃pared to other methods， the STAR-ADF method demon⁃strates superior performance in terms of enhanced con⁃trast， making the features of the image clearer and more prominent.  By applying the STAR-ADF method， we can obtain more accurate and reliable image results， which supports the research and analysis of space life science experiments.
1 Data acquisition 

This study utilized a custom-designed visible light microscopy camera device equipped with the detector fea⁃turing a resolution of 1 294×1 024 pixels.  The experi⁃

mental data were derived from life science experiments conducted in space.  The image datasets involved in the experiment include brightfield microscopic images， in⁃cluding mesenchymal stem cells， osteoblasts， pluripo⁃tent stem cells， liver stem cells， germ cells， human em⁃bryonic stem cells， mouse embryonic stem cells under di⁃verse experimental conditions.  In order to show uneven illumination of the detector output， we demonstrate the relationship between the light source of the brightfield mi⁃croscope and the cell culture region， as shown in Fig.  1.

2 Methods 
We propose a novel method for targeted improve⁃ment of image quality， accomplished through the integra⁃tion of the structure and texture aware Retinex （STAR） model［8］ and the nonlinear anisotropic diffusion filtering technique， as shown in Fig.  2.  The two input and output examples in the pipeline are displayed below each mod⁃ule.  The first line shows significant uniform illumina⁃tion， while the second line shows notable noise removal.  Initially， we employ the STAR model to adjust the bright⁃ness of the images uniformly and minimize the loss of im⁃age details.  By utilizing an exponential total variation weighting matrix， the STAR model effectively combines image texture information， thereby preserving image de⁃tails.  Secondly， the anisotropic filtering is employed to reduce the impact of image quality， which adjusts the fil⁃ter response based on the degree of difference between the pixels in the image.  The principle is based on the lo⁃cal image features to preserve the edges and details in the image while reducing the impact of noise in flat regions， ultimately improving the overall visual quality of the im⁃age.  By combining the advantages of the STAR model and anisotropic filters， our proposed approach enhances the image quality， including improved sharpness， noise reduction， and enhanced visual appearance.

2. 1　Theoretical model　In 1971， Land et al.［9］ proposed the Retinex mecha⁃nism.  The light information received by the detector is determined by the light intensity and the reflection coeffi⁃cient of the target surface.  Suppose that L is the illumina⁃

Fig.  1　Schematic diagram of the spatial microscope camera
图 1　空间显微相机示意图
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tivation， and the University of Zurich successfully trans⁃ported a dedicated space vehicle to the International Space Station （ISS） in March 2020.  However， achieving high-quality 3D imaging in the space environment contin⁃ues to pose challenges for current applications.Imaging devices and detectors are subject to the unique conditions of the space environment， including strong radiation， vacuum， and temperature fluctuations， which are quite different from the environment on Earth.  These conditions can introduce intricate noise patterns and uneven illumination issues which display on the Grayscale， thereby diminishing the quality and accuracy of the images.  Such degradation has far-reaching effects for scientific observations and analysis， so it is impera⁃tive to employ suitable techniques to enhance the quality of detector output data.For the two image tasks of highlight removing and denoising， state-of-the-art algorithms are mainly divided into traditional methods and machine learning-based methods.  Soleimani et al. ［4］ removed the effects of light with adaptive threshold techniques and denoised with BM3D filtering to achieve better cell segmentation.  How⁃ever， this method may lead to a loss of target details.  Park et al. ［5］ proposed a dual autoencoder network model based on the Retinex theory for enhancing and denoising low-light images.  Based on the U-net model， Ai et al. ［6］ employed a machine learning approach， utilizing short-exposure and long-exposure images as input and ground truth， respectively， for training.  The results demonstrate the network's ability to achieve balanced illumination while enhancing details in dark regions.  Recently， Gen⁃erative Adversarial Networks （GANs） have also been ex⁃plored as unsupervised image enhancement methods.  Ying et al. ［7］ proposed the LE-GAN method， which in⁃corporates an illumination-aware module into the GAN framework， effectively addressing noise and overexpo⁃sure issues in real-scene datasets.  Nonetheless， these network models still require standardized datasets， pos⁃ing a challenging problem in resource-limited space sci⁃ence experiments.Based on the Retinex theory， we present a method called STAR-ADF for enhancing microscopic images ob⁃tained from space life science experiments.  This method not only ensures preserving image details but also effec⁃tively addresses challenges associated with brightness and noise， which provides a valuable and practical tool for scientists to analyze the space experiment data.  Com⁃pared to other methods， the STAR-ADF method demon⁃strates superior performance in terms of enhanced con⁃trast， making the features of the image clearer and more prominent.  By applying the STAR-ADF method， we can obtain more accurate and reliable image results， which supports the research and analysis of space life science experiments.
1 Data acquisition 

This study utilized a custom-designed visible light microscopy camera device equipped with the detector fea⁃turing a resolution of 1 294×1 024 pixels.  The experi⁃

mental data were derived from life science experiments conducted in space.  The image datasets involved in the experiment include brightfield microscopic images， in⁃cluding mesenchymal stem cells， osteoblasts， pluripo⁃tent stem cells， liver stem cells， germ cells， human em⁃bryonic stem cells， mouse embryonic stem cells under di⁃verse experimental conditions.  In order to show uneven illumination of the detector output， we demonstrate the relationship between the light source of the brightfield mi⁃croscope and the cell culture region， as shown in Fig.  1.

2 Methods 
We propose a novel method for targeted improve⁃ment of image quality， accomplished through the integra⁃tion of the structure and texture aware Retinex （STAR） model［8］ and the nonlinear anisotropic diffusion filtering technique， as shown in Fig.  2.  The two input and output examples in the pipeline are displayed below each mod⁃ule.  The first line shows significant uniform illumina⁃tion， while the second line shows notable noise removal.  Initially， we employ the STAR model to adjust the bright⁃ness of the images uniformly and minimize the loss of im⁃age details.  By utilizing an exponential total variation weighting matrix， the STAR model effectively combines image texture information， thereby preserving image de⁃tails.  Secondly， the anisotropic filtering is employed to reduce the impact of image quality， which adjusts the fil⁃ter response based on the degree of difference between the pixels in the image.  The principle is based on the lo⁃cal image features to preserve the edges and details in the image while reducing the impact of noise in flat regions， ultimately improving the overall visual quality of the im⁃age.  By combining the advantages of the STAR model and anisotropic filters， our proposed approach enhances the image quality， including improved sharpness， noise reduction， and enhanced visual appearance.

2. 1　Theoretical model　In 1971， Land et al.［9］ proposed the Retinex mecha⁃nism.  The light information received by the detector is determined by the light intensity and the reflection coeffi⁃cient of the target surface.  Suppose that L is the illumina⁃

Fig.  1　Schematic diagram of the spatial microscope camera
图 1　空间显微相机示意图
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tion information， R is the reflection coefficient， corre⁃spondingly I is the data received by the detector， and the relationship between the three can be shown as follows：
I ( i, j ) = L ( i, j )∙R ( i, j ) ,　(1)

where the pixels of the image are represented as ( i，j )， 
and I， L， and R represent the original image， the extract⁃ed light layer image， and the reflection information lay⁃er， respectively.  The generation of light regions in the image results from the unevenness of illumination， that is， the non-uniform brightness value expressed in the light layer［10］.  For the extraction of illumination compo⁃nents， this paper transforms them into optimization prob⁃lems， alternately iteratively optimizing the difference be⁃tween the input image and the product of the estimated light and reflection layers.  At the same time， in order to prevent overfitting and ensure that the estimated light and reflection layers are meaningful， it is necessary to use the regularization function to add constraints to the solution space.  The total variational （TV） algorithm［11］ is a denoising algorithm widely used in the field of image processing.  By calculating the ℓ1 norm minimization of the image gradient， the image is smoother while main⁃taining the edge information［12-13］.  Building upon this foundation， the optimization problem is reformulated af⁃ter incorporating the full variational regularization con⁃straint， yielding the following expression：min

L,R ‖I ( i, j ) - L ( i, j )∙R ( i, j )‖ + TV (L ) + TV (R ), (2)
where TV (∙) is the total variation of the image， and 
TV (L ) = ∑i，j || ∇L ( i，j ) ， TV (R) = ∑i，j || ∇R ( i，j ) .

However， in detail-rich cell microscopic images， applying total variational filtering may result in excessive suppression of high-frequency details in images［19］.  In or⁃der to improve the performance of the total variational al⁃gorithm， an indexed total variational method is proposed 
（see Eq.  （3））.  By assigning values to the exponential parameters α and β， the characteristics of which are used to adjust the filter effect in a targeted manner.  Since the edge gradient of the target is usually larger than the detail gradient， the edge will be amplified when the index is greater than 1， and the detail will be amplified when the index is less than 1.  Our experiments have shown that the exponential total variance method has a good effect in 

cell microscopic image enhancement， which balances strong light removal， edge enhancement and detail pres⁃ervation to improve image quality while maintaining tex⁃ture richness.min
L,R ‖I ( i, j ) - L ( i, j )∙R ( i, j )‖ + λ∙ETV (L ) + μ∙ETV (R )

,　(3)where ETV (∙) denotes the exponential local variance of 
the image， the weight matrix WL = 1/ ( | ∇L ( i，j ) |α + ε) 
and WR = 1/ ( | ∇R ( i，j ) |β + ε) is added.  Therefore， we 
can derive that ETV (L ) = ∑i，j ||WL∙∇L ( i，j ) ， ETV (R) =∑i，j ||WR∙∇R ( i，j ) .  Then the iterative solution of illumina⁃
tion component and uniform illumination results through vector form：
l = arg min

l
  i - diag ( )r × l

2
2 + λ diag ( )WL × vl

2
2,(4)

r = arg min
r

  i - diag ( )l × r
2
2 + μ diag ( )WR × vr

2
2,(5)

where we denote that i = vec( I (：) )， l = vec(L (：) )， r =
vec(R (：) )， vl = vec(∇L (：) )， vr = vec(∇R (：) )， and 
diag (∙)  is the conversion of vectors into diagonal matri⁃
ces.  The estimated component can be expressed as： L̂ =
resize ( l )， R̂ = resize (r ).Normalize the results （see Eq.  （6））， std (∙) indi⁃
cates the standard deviation of the image：

Rn = R̂

std ( )R̂ .　(6)
The principle of anisotropic filtering［14］， is to treat the image as a heat field， the distribution of pixel values at each point is the heat distribution in space， the heat diffuses from high temperature to low temperature， and the heat conduction stops at the contour boundary in the image［15］.  By calculating the gradient of the pixel and its four neighbors， the thermal conductivity of the pixel in 

the spatial direction can be solved.  AD(Rn( i，j ) ) is the an⁃
isotropy measure of ( i，j )：

AD(Rn( i, j ) ) = e( )- ∇DRn( )i,j 2

t ,　(7)
where Rn( i，j ) is the gray value of the first pixel of the im⁃
ages to be denoised， D represents the direction， and for 

Fig.  2　Proposed methodological framework diagram
图 2　提出的方法框架图

the four-neighborhood solution referring to east， west， south and north.  ∇DRn ( i，j ) is the gradient of a certain di⁃
rection of the point， and the weight of the filter of each pixel （denoted as A (∙)） is calculated according to the an⁃isotropy metric.  According to the gradient information and noise level of the image， the filtering direction of anisotropic filtering is determined.  In general， filtering along the edges of the image better preserves the edge de⁃tails of the image.  According to the determined filtering direction， the image is filtered：

O ( i, j ) = ∑d = 1
4 AD (d )(Rn( i, j ) )∙∇D ( )d Rn( )i, j .　(8)

The proposed method aims to achieve a dual objec⁃tive： smoothing the image pixels while retaining the maxi⁃mal edge information.  To this end， multiple iterative fil⁃tering operations are applied to progressively diminish noise artifacts presenting in the image.  Subsequently， the output at this stage undergoes further processing， uti⁃lizing contrast limited adaptive histogram equalization 
（CLAHE） to enhance the image's contrast［16］.In addition， for objective evaluation， three key eval⁃uation indicators are used to assess the performance of various methods in meeting the task requirements： image entropy， contrast ratio （EME）， and image similarity 
（SSIM）.  Firstly， entropy is utilized to quantify the infor⁃mation loss before and after the image processing （Eq.  
（9） and Eq.  （10））.  Higher image entropy values indi⁃cate a more uniform and complex distribution of pixel val⁃ues， signifying a greater presence of details and informa⁃tion within the image［17， 20］ .  Conversely， lower image en⁃tropy values suggest a more concentrated and simpler dis⁃tribution of pixel values， indicating a relatively reduced amount of information in the image.  Assuming that the frequency of a pixel value is denoted as k ( v )， the fre⁃quency of that pixel value can be expressed as：

p ( v) = k ( )v
H × W

,　(9)
where H and W represent the height and width of the im⁃age， respectively.  The image entropy is calculated using the following formula：

Entropy = -∑( p ( v )∙log2 ( p ( v) ) ) .　(10)
Secondly， we utilize Enhancement Measure Evalua⁃tion （EME） as an assessment index to quantify the im⁃provement in image contrast achieved after processing.  The calculation method involves dividing the image into M*N small areas， and then calculating the logarithmic mean of the ratio of the largest gray value to the smallest value in the small area， and the evaluation result is ob⁃tained as the logarithmic mean：

Eme =
∑M∑N 20 log ( )max ( )Im,n

min ( )Im,n
M × N ,　(11)

where max ( Im，n ) represents the maximum gray value 
within the image block （m，n) and min ( Im，n ) is the mini⁃
mum gray value within the image block.Lastly， we adopt the Structural Similarity （SSIM） as the evaluation metric to quantify the similarity be⁃tween images before and after processing.  Given the rep⁃

resentations of the original image and the evaluated im⁃age as Io and Ie， respectively， then SSIM quantifies the degree of similarity between them in a quantitative man⁃ner as the following formula：
S sim = (2mean ( )Io ∙mean ( )Ie

[ ( )mean ( )Io
2 + ( )mean ( )Ie

2 + c1 ]
∙ ( )2Cov ( )Io,Ie + c2
é
ë

ù
û( )sigma ( )Io

2 + ( )sigma ( )Ie
2 + c2

,　(12)
where mean (∙) represents the mean value of the image， 
sigma (∙) represents the standard deviation of the image， 
Cov (∙) denotes the covariance between the two images.  
The constant c1 and c2 are introduced to avoid dividing by zero， with cx = (kx∙max ( I ) ) 2， x = 1 or 2.  For 8-bit gray⁃scale images， max ( I ) = 255.
2. 2　STAR-ADF method flow　The STAR-ADF method is specifically designed to improve the quality and contrast of microscopic images for better visualization of cells and microstructures.  The flowchart of the STAR-ADF method is illustrated in Fig.  3.  For the uniform illumination task， the light layer sepa⁃ration method based on the Retinex theory finds a wide range of applications.  Given our emphasis on detail pres⁃ervation， we address this challenge by creating separate maps for the light layer and the reflection layer， utilizing the spatial properties of the image.  To maintain rich tex⁃ture information in microscopic images， we explore the application of multiple filtering methods in both the fre⁃quency and spatial domains.  During the experiment， we initially performed a high-frequency component enhance⁃ment filtering attempt on the frequency domain image af⁃ter Fourier transform or wavelet transform.  However， we observed significant distortion in the resulting images.  In the content of microscopic images， we want to achieve as smooth an image as possible in the target area， while keeping the contours and details as unsmooth as possi⁃ble.  For this reason， we select a total variational model and optimize the model by gradient descent to get the op⁃timal solution.  Fully variational models are widely used in image processing， and their advantage lies in their ability to smooth flat areas of the image while preserving image edges and texture details， effectively improving image quality and keeping important information.  This method extends the optimization model of the full varia⁃tional method by incorporating exponential parameters， allowing separate extraction of the illumination structure and reflection texture of the image.  These results gener⁃ate a structure map and a reflection map， which serve as weight matrices， providing measurements of regional structure and texture information within the image.  Satis⁃factory smoothness and the light layer can be obtained by using this approach， but the scattered noise spots within the image still require further resolution.Compared with other denoising methods， anisotro⁃pic filters are more suitable for our image data according to image characteristic analysis and attempts.  Anisotro⁃pic filtering， a nonlinear filtering method commonly em⁃ployed for image denoising， is calculated.  First， the gra⁃
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the four-neighborhood solution referring to east， west， south and north.  ∇DRn ( i，j ) is the gradient of a certain di⁃
rection of the point， and the weight of the filter of each pixel （denoted as A (∙)） is calculated according to the an⁃isotropy metric.  According to the gradient information and noise level of the image， the filtering direction of anisotropic filtering is determined.  In general， filtering along the edges of the image better preserves the edge de⁃tails of the image.  According to the determined filtering direction， the image is filtered：

O ( i, j ) = ∑d = 1
4 AD (d )(Rn( i, j ) )∙∇D ( )d Rn( )i, j .　(8)

The proposed method aims to achieve a dual objec⁃tive： smoothing the image pixels while retaining the maxi⁃mal edge information.  To this end， multiple iterative fil⁃tering operations are applied to progressively diminish noise artifacts presenting in the image.  Subsequently， the output at this stage undergoes further processing， uti⁃lizing contrast limited adaptive histogram equalization 
（CLAHE） to enhance the image's contrast［16］.In addition， for objective evaluation， three key eval⁃uation indicators are used to assess the performance of various methods in meeting the task requirements： image entropy， contrast ratio （EME）， and image similarity 
（SSIM）.  Firstly， entropy is utilized to quantify the infor⁃mation loss before and after the image processing （Eq.  
（9） and Eq.  （10））.  Higher image entropy values indi⁃cate a more uniform and complex distribution of pixel val⁃ues， signifying a greater presence of details and informa⁃tion within the image［17， 20］ .  Conversely， lower image en⁃tropy values suggest a more concentrated and simpler dis⁃tribution of pixel values， indicating a relatively reduced amount of information in the image.  Assuming that the frequency of a pixel value is denoted as k ( v )， the fre⁃quency of that pixel value can be expressed as：

p ( v) = k ( )v
H × W

,　(9)
where H and W represent the height and width of the im⁃age， respectively.  The image entropy is calculated using the following formula：

Entropy = -∑( p ( v )∙log2 ( p ( v) ) ) .　(10)
Secondly， we utilize Enhancement Measure Evalua⁃tion （EME） as an assessment index to quantify the im⁃provement in image contrast achieved after processing.  The calculation method involves dividing the image into M*N small areas， and then calculating the logarithmic mean of the ratio of the largest gray value to the smallest value in the small area， and the evaluation result is ob⁃tained as the logarithmic mean：

Eme =
∑M∑N 20 log ( )max ( )Im,n

min ( )Im,n
M × N ,　(11)

where max ( Im，n ) represents the maximum gray value 
within the image block （m，n) and min ( Im，n ) is the mini⁃
mum gray value within the image block.Lastly， we adopt the Structural Similarity （SSIM） as the evaluation metric to quantify the similarity be⁃tween images before and after processing.  Given the rep⁃

resentations of the original image and the evaluated im⁃age as Io and Ie， respectively， then SSIM quantifies the degree of similarity between them in a quantitative man⁃ner as the following formula：
S sim = (2mean ( )Io ∙mean ( )Ie
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ù
û( )sigma ( )Io
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where mean (∙) represents the mean value of the image， 
sigma (∙) represents the standard deviation of the image， 
Cov (∙) denotes the covariance between the two images.  
The constant c1 and c2 are introduced to avoid dividing by zero， with cx = (kx∙max ( I ) ) 2， x = 1 or 2.  For 8-bit gray⁃scale images， max ( I ) = 255.
2. 2　STAR-ADF method flow　The STAR-ADF method is specifically designed to improve the quality and contrast of microscopic images for better visualization of cells and microstructures.  The flowchart of the STAR-ADF method is illustrated in Fig.  3.  For the uniform illumination task， the light layer sepa⁃ration method based on the Retinex theory finds a wide range of applications.  Given our emphasis on detail pres⁃ervation， we address this challenge by creating separate maps for the light layer and the reflection layer， utilizing the spatial properties of the image.  To maintain rich tex⁃ture information in microscopic images， we explore the application of multiple filtering methods in both the fre⁃quency and spatial domains.  During the experiment， we initially performed a high-frequency component enhance⁃ment filtering attempt on the frequency domain image af⁃ter Fourier transform or wavelet transform.  However， we observed significant distortion in the resulting images.  In the content of microscopic images， we want to achieve as smooth an image as possible in the target area， while keeping the contours and details as unsmooth as possi⁃ble.  For this reason， we select a total variational model and optimize the model by gradient descent to get the op⁃timal solution.  Fully variational models are widely used in image processing， and their advantage lies in their ability to smooth flat areas of the image while preserving image edges and texture details， effectively improving image quality and keeping important information.  This method extends the optimization model of the full varia⁃tional method by incorporating exponential parameters， allowing separate extraction of the illumination structure and reflection texture of the image.  These results gener⁃ate a structure map and a reflection map， which serve as weight matrices， providing measurements of regional structure and texture information within the image.  Satis⁃factory smoothness and the light layer can be obtained by using this approach， but the scattered noise spots within the image still require further resolution.Compared with other denoising methods， anisotro⁃pic filters are more suitable for our image data according to image characteristic analysis and attempts.  Anisotro⁃pic filtering， a nonlinear filtering method commonly em⁃ployed for image denoising， is calculated.  First， the gra⁃

291



红 外 与 毫 米 波 学 报 43 卷

dient intensity and orientation of each pixel in the gray⁃scale images are calculated to capture edge and texture information.  Based on the gradient information of the pix⁃els， we calculate a weight coefficient that reflects the structural features surrounding each pixel.  During the fil⁃tering process， this weight coefficient guides the adjust⁃ment of smoothness in different directions.  A sliding win⁃dow is then employed to weight the pixel values of a local neighborhood for each pixel in the image.  By introducing weight coefficients， the filter becomes more sensitive to pixel value variations along edges and texture directions while ensuring smoother pixel value transitions in flat re⁃gions.  This preservation of edge and texture information enhances the overall image quality.  Ultimately， the fil⁃tered image attains a higher level of visual fidelity， repre⁃senting the improved outcome of this denoising proce⁃dure.

3 Analysis of experimental results 
In this section， we present a comprehensive perfor⁃mance analysis of the proposed method， evaluating its ef⁃fectiveness from both subjective and objective perspec⁃tives.  The test dataset employed in the experiment con⁃sists of the image data derived from various life science experiments as discussed in Part 2.  The experiment is performed with MATLAB software on a PC with 3. 70 GHz CPU and 16. 00 GB RAM.Firstly， our method decomposes the image to obtain the illumination layer and reflection layer as shown in Figs.  4（a） and 4（b）， respectively.  The extraction of the weighted matrix map is shown in Fig.  4（c）.

The exponential parameters are determined through a series of experiments.  Initially， a parameter range is defined， followed by iterative testing and evaluation of entropy values to identify the optimal parameter value.  The entropy outcomes for various parameter choices are presented in Table 1.  Favorable outcomes are character⁃ized by higher entropy values for R and lower entropy val⁃ues for L.  Consequently， α = 0. 1 and β = 2 are deemed 
more fitting for our datasets.

The visual outcomes of our experiments are illustrat⁃ed in Fig.  5.  Notably， when α = 0. 1， β = 2， the reflec⁃
tion layer exhibits more pronounced detail， while the illu⁃mination layer appears smoother.

The histogram functions as a statistical representa⁃tion of the grayscale values present within the image， fa⁃cilitating an evaluation of the influence of uniform illu⁃mination in the experiment， as illustrated in Figs.  6
（a） and 6（b）.  Two densely distributed subplots from the same image are selected for histogram analysis.  In the original image （Fig.  6（a））， the blue box delin⁃eates a specific area， while the orange-yellow box indi⁃cates the magnified section of the image.  The histogram information for these two regions is presented on the rightmost side.  Notably， the distribution of image lumi⁃nance values within the immediate vicinity of the light 

Fig.  3　Flow chart of the STAR-ADF method
图 3　STAR-ADF方法流程图

Fig.  4　Decomposition images：（a） reflection layer；（b） illumi‐
nation layer；（c） weighted matrix map
图 4　分解图：（a）反射层；（b）光照层分解；（c）权重矩阵示意图

Table 1　Entropy of different exponential parameters
表1　不同指数参数下的熵值
Entropy of 

L
β = 1. 5

β = 2
β = 4

α = 0. 1
6. 812 1
6. 815 8
6. 825 5

α = 0. 2
6. 812 1
6. 815 8
6. 825 5

α = 0. 5
6. 812 1
6. 815 8
6. 825 5

Entropy of 
R

β = 1. 5
β = 2
β = 4

α = 0. 1
5. 914 3
5. 932 0
5. 928 1

α = 0. 2
5. 914 0
5. 931 7
5. 927 9

α = 0. 5
5. 912 4
5. 930 4
5. 926 5

Fig.  5　Comparison of exponential parameter results：（a） reflec‐
tion layer results；（b） illumination layer results
图 5　指数参数比较结果：（a） 反射层结果；（b） 光照层结果

source （blue box area） is relatively narrow， resulting in a smaller contrast measurement EME value［18］ when compared to the surrounding boundary area （orange-yel⁃low box area）.  In the original image （Fig.  6（a））， the blue box represents a specific area， while the orange-yellow box corresponds to the magnified portion of the image.  The rightmost part of the figure displays the his⁃togram information for these two regions.  Notably， with⁃in the direct vicinity of the light source （blue box ar⁃ea）， the distribution range of image luminance values is relatively small， resulting in a smaller contrast mea⁃surement EME value compared to the surrounding boundary area （orange-yellow box area）.  The original image （Fig.  6（c）） exhibits fringe noise artifacts and local area magnification.  Subsequently， Fig.  6（d） presents the result plot obtained after applying the STAR-ADF treatment.To rigorously assess the efficacy of our proposed method， we conduct a comprehensive cross-sectional comparison， as illustrated in Fig.  7， against three dis⁃tinct lighting decomposition approaches.  To ensure com⁃parability， consistent contrast enhancement operations are applied to all datasets in the present study.  These ex⁃isting methods show adaptability to some extent concern⁃ing different target characteristics.  Noteworthy dispari⁃ties emerge when confronted with varying degrees and po⁃sitions of uneven lighting conditions.Specifically， the MSR method［21-22］ may exhibit ex⁃cessive enhancement in regions featuring darker edges， resulting in noticeably bright edge artifacts within the im⁃age.  Both the MSR method and the LIME method show limited adaptability to regions with high brightness， which makes it difficult to achieve uniform illumination in areas directly exposed to the light source.  On the other hand， the Jiep method［23］ achieves desirable brightness 

uniformity but compromises on the degree of detail pres⁃ervation， and is unable to implement our proposed meth⁃od.  Consequently， our approach excels in terms of illu⁃mination uniformity and detail preservation， affording significant advantages over the compared methods.We evaluate each method with 20 test images and get the results shown in Table 2.  From the results of the objective evaluation index of the experiment， the method proposed by us is in the entropy， EME and SSIM perform well on evaluation indicators.  This shows that， compared to the other three enhancement methods of lighting de⁃composition， our method has a higher image information 

Fig.  6　Illumination uniformization and denoising results：（a） the original image and the local indicator evaluation；（b） the STAR-ADF 
enhanced image and the local indicator evaluation；（c） the original image and the extraction；（d） the STAR-ADF enhanced image and the 
extraction
图 6　光照均匀化和去噪效果：（a） 原始图像和局部指标评价；（b） STAR-ADF增强后图像和局部指标评价；（c） 原始图像和提取；
（d） STAR-ADF增强后图像和提取

Fig.  7　 Results of four different cell experiments by different 
methods
图 7　四种不同细胞实验使用不同方法得到的结果
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retention and enhancement effect while maintaining the structural and detailed similarity of the image.
4 Conclusions 

In this paper， we present a novel image enhance⁃ment method termed STAR-ADR， which demonstrates excellent application results for the images of spatial cell tissue experiments.  Through the proposed method， we address the challenges of uneven illumination and fringe noise that commonly arise in the space environment， con⁃sequently improving the image quality requisite for cell tissue experiments.  The method enables enhanced target identification， enabling scientists to observe images more clearly and facilitating subsequent computer-based recog⁃nition processes.  Furthermore， objective evaluation indi⁃ces substantiate the effectiveness of the proposed meth⁃od.  The results show a significant 12. 5% improvement in the contrast evaluation index compared to the original image， while preserving essential image details.  These findings provide empirical evidence of the efficacy and utility of the STAR-ADR method for enhancing image quality of spatial cell tissue experiments.
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Table 2　Comparison results of objective evaluation in⁃
dex methods

表2　客观评价指标方法对比结果
Methods
Original

MSR
LIME
Jiep

Proposed

Entropy

6. 941 4
5. 311 4
6. 225 9
4. 995 9
6. 673 0

Eme

7. 237 2
2. 102 2
6. 734 5
2. 259 0
8. 141 6

Ssim

1. 000 0
0. 994 7
0. 993 4
0. 992 5
0. 996 2
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